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Summary of Presentation

• MMS: four helioscience spacecraft 
flying in formation

• Spinners (3.05 RPM); 60 m wires

• Thrusters for attitude, orbit control

• Star camera attitude sensors

• Summary of presentation:
- Spin axis targeting
- Effects of environmental torques

- Effects of active potential control 
device (jets of Indium ions) on 
observed spacecraft spin rate

- Derivation of effective thrust

- Analysis of MMS4 impact event in 
Feb. 2016, using attitude data
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Spin Axis Target

• Spin axis (body Z-axis) must be near ecliptic pole

• This attitude ensures sunlight does not fall on upper deck

– Upper deck illumination would cause emission of photoelectrons 

that would perturb the local plasma and field measurements

• However, spin axis needs some tilt towards the Sun

– Tilt prevents shadows from pre-amplifiers on wire booms from 

crossing the spherical detectors at ends of wire booms

• Shadows cause momentary interruption of photo-emissive electron 

cloud around detector spheres, again perturbing field measurements

• Target box for science ops is isosceles trapezoid, roughly 

2.5 deg × 2.5 deg with center tipped 3.5 deg toward Sun
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Environmental Torques

• MMS Attitude Ground System (AGS) predicts when spin 

axis will drift to the edge of the target box

– AGS plans attitude slews to center or to opposite edge of box to 

maximize time between maneuvers

– Spin axis drift depends on seasonally changing environmental 

torques

– Very rough order-of-magnitude estimates of torques

• Gravity-gradient: 10-4 N-m

• Solar pressure: 10-6 N-m

• Aerodynamic drag: 10-7 N-m

– So, only gravity-gradient (GG) torque is used in AGS predictions
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Predicted Precession of Spin Axis

• AGS predicts GG drift of the spin axis direction

– Early mission, after all booms deployed, drift was 0.05 deg per orbit (orbital 

period was close to 24 hours)

– Plot shows accumulated drift error for 35 days with no maneuvers

– Error in drift prediction was approximately 0.00034 deg per orbit
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Seasonal Variation of Precession

• Magnitude and direction of GG precession vary seasonally

– Orbit normal drifted approx. 21 deg during one year, affecting GG torque

– Target box center follows the Sun motion of one deg per day

– Attitude maneuvers are performed every 2 to 4 weeks to stay in target box

– Plots show seasonal variation of magnitude of precession per orbit and 

angle between direction of precession and motion of box center

• GG precession is helping when angle is near zero (i.e., longer time between 

maneuvers), but GG magnitude is smallest then (so it doesn’t help much)

• Avg. time between maneuvers was 30 days for the months when angle was 

small, and was 22.5 days for the entire post-commissioning time span
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Observed Change In Spin Rate

• Distinct spin rate change observed at ASPOC (Active Spacecraft 

Potential Control Investigation) turn on and duty cycle changes 
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ASPOC Characteristics 

• Purpose is to neutralize buildup of positive 

floating potential produced by the 

spacecraft/environment interaction

• Strong potential created between emitter 

and extractor

• Indium atoms ionized and accelerated by 

this electric field

• 2 active emitters on each Spacecraft

• Location produces a coupled negative 

(against direction of S/C rotation) torque
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Determining Empirical Thrust

• Time between maneuvers defined as a sample

• Using average deceleration, center of mass, moment of inertia, and 

emitter energy an empirical emitter thrust is calculated
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Summary of MMS4 Impact Event

• MMS4 relevant data observations:
- Failure of one shunt resistor
- Accelerometers detected spacecraft disturbance
- Star cameras “blinded” by non-star objects; reset by fault detection
- Small attitude excursions (change in spin axis direction; nutation etc.)
- Science instruments detected plasma around spacecraft

• MMS4 state at event:
- Radius 48,176 km (7.553 RE): 6,012 km greater than GEO radius
- Latitude -21.2 deg: 17,403 km below equatorial GEO plane
- 4,414 km below Ecliptic
- Orbital speed 2.661 km/s

• Geometry of event:
- Impact, possibly oblique, on bottom face of spacecraft

• Goals of analysis: to the (limited) accuracy possible with given data
- Identify candidate impactor sources
- Estimate likely approach direction
- Estimate likely relative speed and mass of impactor
- Estimate likely kinetic energy of initial impactSept. 16, 2016
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Impact Location (Shunt Resistor)
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Shunt Resistor Data

• …:
- …

• …
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Analysis Methodology

• Use relative sizes of initial spikes in accelerometer signals caused 
by event to estimate velocity direction of impactor relative to MMS

• Use change in MMS spin axis direction produced by event, 
together with known spacecraft angular momentum, to derive the 
transverse angular momentum applied to MMS by impactor

• From known impact point on spacecraft and estimated approach 
direction, this allows the linear momentum (mvrel) of impactor
relative to MMS CM to be computed

• From known position on orbit of impact, the MMS orbital velocity at 
the time of the event is known

• For assumed impactor population, can hence find estimated speed 
of impactor relative to MMS

• From the known linear momentum mvrel and relative speed vrel, we 
can then estimate the mass m of the impactor

• Use these to estimate kinetic energy of initial impact, T=0.5mvrel
2
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Accelerometer Measurements

  1:  X

  2:  Y

  3:  Z

 1F:  X

 2F:  Y

 3F:  Z

Time  (HH:MM:SS)

2016-033 14:26:20.847 2016-033 16:33:47.243

14:30:00 15:00:00 15:30:00 16:00:00 16:30:00

14:45:00 15:15:00 15:45:00 16:15:00
3642

3642.5

3643

3643.5

3644

3644.5

3645

m
ic

ro
-g

MMS4 ACC#1 Body Accelerations

 

 

  1:  X

  2:  Y

  3:  Z

 1F:  X

 2F:  Y

 3F:  Z

Time  (HH:MM:SS)

2016-033 14:26:20.847 2016-033 16:33:47.243

14:30:00 15:00:00 15:30:00 16:00:00 16:30:00

14:45:00 15:15:00 15:45:00 16:15:00

-275

-274.5

-274

-273.5

-273

-272.5

-272

-271.5

-271

-270.5

-270

m
ic

ro
-g

MMS4 ACC#1 Body Accelerations

 

 

  1:  X

  2:  Y

  3:  Z

 1F:  X

 2F:  Y

 3F:  Z

Time  (HH:MM:SS)

2016-033 14:22:07.618 2016-033 16:38:55.131

14:30:00 15:00:00 15:30:00 16:00:00 16:30:00

14:45:00 15:15:00 15:45:00 16:15:00

-1

-0.5

0

0.5

1

1.5

m
ic

ro
-g

MMS4 ACC#1 Body Accelerations

 

 

X-axis: Initial spike -0.8 micro-g

Note: All three axes only sampled 

every 30 s, so actual first motion may 

not be observed

Y-axis: Initial spike 2.8 micro-g

Z-axis: Initial spike -1.7 micro-g

Resulting relative velocity 

direction estimate: 30.3 

deg below spin plane
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Rotation Rates, Transverse and Axial
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Transverse: 

Nutation/boom 

vibration evident

Axial: No change 

in spin rate 

evident

Note brief 

dropout resulting 

from star 

cameras being 

blinded/resetting
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Pointing Angle Before Event
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FFT of Pointing Angle Before Event
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Pointing Angle After Event

Vibration with 

period of ~400 s 

dominates 

response
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FFT of Pointing Angle After Event
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Possible Sources of Impactor - 1

• Two possible sources have been studied:
- Micrometeoroid (dust particle)
- Debris originating in GEO and perturbed by lunisolar gravitation plus 

solar radiation pressure (SRP) to point of impact

• Micrometeoroid (dust) population:
- Overall mass range: ~ 10-14 to 100 gm
- Peak mass range: ~10-8 to 10-3 gm (~2x10-4-0.9 mm diameter)
- Flux tails off quickly: ~10-3 as high at 1 mm diameter as at 0.1 mm*

* Fig. 2, “Micrometeoroid and Orbital Debris Environments for the International Space Station”, 
Peterson and Lynch, 2008
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Possible Sources of Impactor - 2

• Debris originating in GEO: GEO spacecraft have inclinations that 
oscillate between 0 and ~15 deg, as a result of lunisolar 
perturbations.  The impact latitude of -21.2 deg exceeds this range; 
the impact radius was also 6,012 km above GEO

• However, objects released from GEO that have high area/mass 
ratios (> ~15 m2/kg) experience significant solar radiation pressure 
(SRP) perturbations in eccentricity (and so radius) and inclination

• References:
- “Long-Term Dynamics of High Area-to-Mass Ratio Objects in High 

Earth Orbit”, Rosengren and Scheeres, 2013
- “Long-Term Evolution of Geosynchronous Orbital Debris with High 

Area-to-Mass Ratios”, Pardini and Anselmo, 2006

• Possible debris source: multi-layer insulation (MLI).  MLI degrades 
in GEO.  See Tedlar thin film before, after 3 years simulated GEO*:

• Representative MLI layer density 40 gm/m2; area/mass 25 m2/kg
* “Radiative Heat Trade-Offs for Spacecraft Thermal Protection”, S. Franke, AFRL
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Particle Mass, Kinetic Energy Estimates

• Linear momentum of impactor must produce observed change in 
spin axis direction of 0.00157 deg

• Mass, KE estimates differ for the two candidate particle sources, as 
a result of the different relative speeds between particle and MMS4

• Micrometeoroid:
- “Typical” relative speed 15 km/s (very wide variation is possible)
- Resulting estimated particle mass 8.48x10-3 gm
- Resulting kinetic energy 953.9 J (46.6% of muzzle energy of AK-47)

• Debris of GEO origin:
- Orbital speed of debris at impact 2.661 km/s
- Resulting relative speed ~4.292 km/s (depends on geometry)
- Resulting estimated debris mass 2.96x10-2 gm
- If from an MLI layer with representative density 40 gm/m2, this yields 

an area of 7.41x10-4 m2, e.g. a square 2.72 cm on a side
- Resulting kinetic energy 272.9 J (13.3% of muzzle energy of AK-47)

• From this analysis, it is difficult to select between the candidates.  
Perhaps impact dynamics analysis can lead to a determination
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Backup Material
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Angular Momentum

Transverse: 

Nutation/boom 

vibration evident

Axial: No change in 

spin rate evident.  

Consistent with 

shunt location being 

close to spin axis
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Pointing Angle After Previous Maneuver

• Oscillation at same ~400 s period is clearly visible

• Observed after all spacecraft maneuvers

• Must be wire boom dynamics excited by thrusting/impact acceleration of 

central spacecraft body
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